Nonnegative least-squares image deblurring: improved gradient projection approaches
نویسندگان
چکیده
The least-squares approach to image deblurring leads to an ill-posed problem. The addition of the nonnegativity constraint, when appropriate, does not provide regularization, even if, as far as we know, a thorough investigation of the illposedness of the resulting constrained least-squares problem has still to be done. Iterative methods, converging to nonnegative least-squares solutions, have been proposed. Some of them have the ‘semi-convergence’ property, i.e. early stopping of the iteration provides ‘regularized’ solutions. In this paper we consider two of these methods: the projected Landweber (PL) method and the iterative image space reconstruction algorithm (ISRA). Even if they work well in many instances, they are not frequently used in practice because, in general, they require a large number of iterations before providing a sensible solution. Therefore, the main purpose of this paper is to refresh these methods by increasing their efficiency. Starting from the remark that PL and ISRA require only the computation of the gradient of the functional, we propose the application to these algorithms of special acceleration techniques that have been recently developed in the area of the gradient methods. In particular, we propose the application of efficient step-length selection rules and line-search strategies. Moreover, remarking that ISRA is a scaled gradient algorithm, we evaluate its behaviour in comparison with a recent scaled gradient projection (SGP) method for image deblurring. Numerical experiments demonstrate that the accelerated methods still exhibit the semi-convergence property, with a considerable gain both in the number of iterations and in the computational time; in particular, SGP appears definitely the most efficient one. 0266-5611/10/025004+18$30.00 © 2010 IOP Publishing Ltd Printed in the UK 1 Inverse Problems 26 (2010) 025004 F Benvenuto et al
منابع مشابه
Fast Projection-Based Methods for the Least Squares Nonnegative Matrix Approximation Problem
Nonnegative matrix approximation (NNMA) is a popular matrix decomposition technique that has proven to be useful across a diverse variety of fields with applications ranging from document analysis and image processing to bioinformatics and signal processing. Over the years, several algorithms for NNMA have been proposed, e.g. Lee and Seung’s multiplicative updates, alternating least squares (AL...
متن کاملFast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem
Nonnegative Matrix Approximation is an effective matrix decomposition technique that has proven to be useful for a wide variety of applications ranging from document analysis and image processing to bioinformatics. There exist a few algorithms for nonnegative matrix approximation (NNMA), for example, Lee & Seung’s multiplicative updates, alternating least squares, and certain gradient descent b...
متن کاملGradient projection methods for image deblurring and denoising on graphics processors
Optimization-based approaches for image deblurring and denoising on Graphics Processing Units (GPU) are considered. In particular, a new GPU implementation of a recent gradient projection method for edge-preserving removal of Poisson noise is presented. The speedups over standard CPU implementations are evaluated on both synthetic data and astronomical and medical imaging problems.
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملA Scaled Gradient Projection Method for Constrained Image Deblurring
A class of scaled gradient projection methods for optimization problems with simple constraints is considered. These iterative algorithms can be useful in variational approaches to image deblurring that lead to minimize convex nonlinear functions subject to nonnegativity constraints and, in some cases, to an additional flux conservation constraint. A special gradient projection method is introd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009